Complete Solutions and Summary of Algebraic Expressions and Identities – NCERT Class 8 Mathematics Chapter 8
Comprehensive explanations, examples, and exercises on addition, subtraction, and multiplication of algebraic expressions, monomials, binomials, trinomials, polynomials, and identities from NCERT Class 8 Mathematics Chapter 8.
Updated: 22 hours ago

Algebraic Expressions and Identities
Chapter 8: Mathematics
Complete Study Guide with Interactive Learning
Chapter Overview
What You'll Learn
Addition/Subtraction
Combining like terms in expressions, e.g., \(7x^2 - 4x + 5 + 9x - 10 = 7x^2 + 5x - 5\).
Monomial Multiplication
Multiplying monomials like \(5x \times 4x^2 = 20x^3\).
Monomial by Polynomial
Using distributive law, e.g., \(3x \times (5y + 2) = 15xy + 6x\).
Polynomial by Polynomial
Term-by-term multiplication, e.g., \((2a + 3b) \times (3a + 4b) = 6a^2 + 17ab + 12b^2\).
Historical Context
This chapter builds on basic algebra, introducing operations on expressions. It covers real-world applications like area (\(l \times b\)) and volume (\(l \times b \times h\)), emphasizing distributive law for multiplication.
Key Highlights
Focus on like terms, exponents, and combining results. Examples include patterns of dots for multiplication visualization and practical scenarios like banana pricing: \((p - 2) \times (z - 4)\).
Comprehensive Chapter Summary
1. Addition and Subtraction of Algebraic Expressions
Algebraic expressions are combinations like \(x + 3\), \(2y - 5\). Addition aligns like terms: \(7x^2 - 4x + 5 + 9x - 10 = 7x^2 + 5x - 5\). Subtraction uses additive inverses: \(7x^2 - 4xy + 8y^2 + 5x - 3y - (5x^2 - 4y^2 + 6y - 3) = 2x^2 - 4xy + 12y^2 + 5x - 9y + 3\). More examples include multi-variable terms like \(7xy + 5yz - 3zx + 4yz + 9zx - 4y - 2xy - 3zx + 5x = 5xy + 9yz + 3zx + 5x - 4y\).
2. Multiplication of Algebraic Expressions: Introduction
Patterns and Real-World Applications
Multiplication visualized with dot patterns: \(m \times n\), \((m + 2) \times (n + 3)\). Area: \((l + 5) \times (b - 3)\). Volume: length \(\times\) breadth \(\times\) height. Pricing: \((p - 2) \times (z - 4)\).
Key Formulas
Distributive law: \(a \times (b + c) = ab + ac\). Extended to polynomials.
Additional Content
More formulas: Commutative: \(a \times b = b \times a\). Associative: \((a \times b) \times c = a \times (b \times c)\).
3. Multiplying a Monomial by a Monomial
Two Monomials
\(5x \times 3y = 15xy\), \(5x \times (-3y) = -15xy\), \(5x \times 4x^2 = 20x^3\), \(5x \times (-4xyz) = -20x^2yz\).
Three or More
\(2x \times 5y \times 7z = 70xyz\), \(4xy \times 5x^2y^2 \times 6x^3y^3 = 120x^6y^6\).
Additional Formulas
Exponent rules: \(x^m \times x^n = x^{m+n}\), coefficients multiply directly.
4. Multiplying a Monomial by a Polynomial
By Binomial/Trinomial
\(3x \times (5y + 2) = 15xy + 6x\), \(3p \times (4p^2 + 5p + 7) = 12p^3 + 15p^2 + 21p\).
5. Multiplying a Polynomial by a Polynomial
Binomial by Binomial/Trinomial
\((2a + 3b) \times (3a + 4b) = 6a^2 + 17ab + 12b^2\), \((a + 7) \times (a^2 + 3a + 5) = a^3 + 10a^2 + 26a + 35\).
Additional Content
More examples: \((x - 4) \times (2x + 3) = 2x^2 - 5x - 12\). Formulas for expansion.
6. Key Definitions and Summary
Monomial (one term), binomial (two), trinomial (three), polynomial (multiple). Like terms combine. Multiplication uses distributive law term-by-term.
Key Concepts and Definitions
Algebraic Expression
Combination of variables and constants, e.g., \(x + 3\).
Like Terms
Same variables and powers, e.g., \(5x\) and \(9x\).
Monomial
One term, e.g., \(3xy\).
Binomial
Two terms, e.g., \(5y + 2\).
Trinomial
Three terms, e.g., \(4p^2 + 5p + 7\).
Polynomial
Multiple terms with non-negative exponents.
Important Facts and Figures
Questions and Answers from Chapter
Short Questions
Q1. Add: \(ab - bc, bc - ca, ca - ab\).
Q2. Add: \(a - b + ab, b - c + bc, c - a + ac\).
Q3. Subtract: \(4a - 7ab + 3b + 12\) from \(12a - 9ab + 5b - 3\).
Q4. Find the product: \(4, 7p\).
Q5. Find the product: \(-4p, 7p\).
Q6. Find the area for lengths and breadths: \(p, q\).
Q7. Obtain the volume: \(5a, 3a^2, 7a^4\).
Q8. Carry out multiplication: \(4p, q + r\).
Q9. Find the product: \((a^2) \times (2a^{22}) \times (4a^{26})\).
Q10. Add: \(p(p - q), q(q - r), r(r - p)\).
Q11. Multiply the binomials: \((2x + 5)\) and \((4x - 3)\).
Q12. Simplify: \((x^2 - 5)(x + 5) + 25\).
Q13. Find the product: \((5 - 2x)(3 + x)\).
Q14. Simplify: \((t + s^2)(t^2 - s)\).
Q15. Simplify: \((a + b + c)(a + b - c)\).
Medium Questions
Q1. Add: \(2p^2 q^2 - 3pq + 4, 5 + 7pq - 3p^2 q^2\).
Q2. Subtract: \(3xy + 5yz - 7zx\) from \(5xy - 2yz - 2zx + 10xyz\).
Q3. Find the areas for: \(10m, 5n\).
Q4. Obtain the product: \(xy, yz, zx\).
Q5. Carry out multiplication: \(ab, a - b\).
Q6. Simplify \(3x(4x - 5) + 3\) and evaluate for \(x = 3\).
Q7. Add: \(2x(z - x - y)\) and \(2y(z - y - x)\).
Q8. Multiply the binomials: \((y - 8)\) and \((3y - 4)\).
Q9. Simplify: \((a^2 + 5)(b^3 + 3) + 5\).
Q10. Simplify: \((a + b)(c - d) + (a - b)(c + d) + 2(ac + bd)\).
Q11. Find the product: \((x + 7y)(7x - y)\).
Q12. Simplify: \((x + y)(x^2 - xy + y^2)\).
Q13. Simplify: \((1.5x - 4y)(1.5x + 4y + 3) - 4.5x + 12y\).
Q14. Carry out multiplication: \(a + b, 7a^2 b^2\).
Q15. Subtract: \(3a(a + b + c) - 2b(a - b + c)\) from \(4c(-a + b + c)\).
Long Questions
Q1. Add: \(l^2 + m^2, m^2 + n^2, n^2 + l^2, 2lm + 2mn + 2nl\).
Q2. Subtract: \(4p^2 q - 3pq + 5pq^2 - 8p + 7q - 10\) from \(18 - 3p - 11q + 5pq - 2pq^2 + 5p^2 q\).
Q3. Complete the table of products for monomials like \(2x, -5y, 3x^2, -4xy, 7x^2 y, -9x^2 y^2\).
Q4. Obtain the volume of rectangular boxes: \(2p, 4q, 8r\).
Q5. Simplify \(a(a^2 + a + 1) + 5\) and find values for \(a=0,1,-1\).
Q6. Multiply the binomials: \((2.5l - 0.5m)\) and \((2.5l + 0.5m)\).
Q7. Find the product: \((a + 3b)\) and \((x + 5)\).
Q8. Simplify: \((x + y)(2x + y) + (x + 2y)(x - y)\).
Q9. Carry out multiplication: \(pq + qr + rp, 0\).
Q10. Complete the table for products like \(x + y - 5, 5xy\).
Q11. Find the product: \(x \times x^2 \times x^3 \times x^4\).
Q12. Subtract: \(3l(l - 4m + 5n)\) from \(4l(10n - 3m + 2l)\).
Q13. Multiply: \((2pq + 3q^2)\) and \((3pq - 2q^2)\).
Q14. Obtain the product: \(a, -a^2, a^3\).
Q15. Simplify: \((a + b + c)abc\).
Interactive Knowledge Quiz
Test your understanding of Algebraic Expressions and Identities
Quick Revision Notes
Add/Subtract
- Like terms: \(5x + 9x = 14x\)
- Inverse for subtract
- Align columns
Monomial Multiply
- \(5x \times 3y = 15xy\)
- Exponents add
- Coefficients multiply
By Polynomial
- Distributive law
- Term by term
- Combine likes
Polynomial Multiply
- Each term multiplies all
- Like terms combine
- Binomial/Trinomial
Exam Strategy Tips
- Identify like terms
- Use distributive law
- Check exponents
- Evaluate carefully
- Practice tables
Group Discussions
No forum posts available.
Easily Share with Your Tribe