Complete Summary and Solutions for Sexual Reproduction in Flowering Plants – NCERT Class XII Biology, Chapter 1 – Structures, Events, Apomixis, Questions, Answers

Comprehensive summary and explanation of Chapter 1 'Sexual Reproduction in Flowering Plants' from the NCERT Class XII Biology textbook, including flower structure, pre- and post-fertilization events, double fertilization, apomixis, polyembryony, and all textbook questions and answers.

Updated: 1 week ago

Categories: NCERT, Class XII, Biology, Chapter 1, Reproduction, Flowering Plants, Apomixis, Polyembryony, Summary, Questions, Answers
Tags: Sexual Reproduction, Flowering Plants, NCERT, Class 12, Biology, Angiosperms, Fertilization, Double Fertilization, Apomixis, Polyembryony, Ovule, Pollination, Summary, Questions, Answers, Chapter 1
Post Thumbnail
Sexual Reproduction in Flowering Plants - Class 11 NCERT Chapter 1 - Ultimate Study Guide, Notes, Questions, Quiz 2025

Sexual Reproduction in Flowering Plants

Chapter 1: Biology - Ultimate Study Guide | NCERT Class 11 Notes, Questions, Examples & Quiz 2025

Full Chapter Summary & Detailed Notes - Sexual Reproduction in Flowering Plants Class 11 NCERT

Overview & Key Concepts

  • Chapter Goal: Explains sexual reproduction in angiosperms, focusing on structures, events pre/during/post-fertilization, and asexual alternatives like apomixis. Exam Focus: Diagrams (flower L.S., anther T.S., ovule, embryo sac, endosperm development), processes (micro/megasporogenesis, double fertilization), comparisons (2-celled vs 3-celled pollen). 2025 Updates: Emphasis on evolutionary adaptations, biotech applications (pollen storage, apomixis in crops). Fun Fact: Double fertilization unique to angiosperms, discovered by Nawaschin (1898). Core Idea: Sexual reproduction generates diversity via meiosis/gamete fusion; ensures species continuity. Real-World: Pollination in agriculture; apomixis for hybrid seed production. Ties: Links to morphology (Ch5), human repro (Ch3). Expanded: All subtopics (1.1-1.5) covered point-wise with diagram descriptions, principles, steps, and evolutionary/biotech relevance for visual/conceptual learning.
  • Wider Scope: From flower as reproductive organ to seed/fruit formation; role in biodiversity, agriculture.
  • Expanded Content: Detailed structures (e.g., wall layers in anther), ploidy changes, developmental stages; e.g., monosporic embryo sac (7 cells, 8 nuclei).
Fig. 1.1: Diagrammatic representation of L.S. of a flower (Description)

Labelled longitudinal section: Sepals at base, petals, stamens (filament + anther), pistil (stigma, style, ovary with ovules). Visual: Bisected flower showing internal symmetry, thalamus attachment.

1.1 Flower – A Fascinating Organ of Angiosperms

  • Importance: Reproductive unit in angiosperms; adaptations ensure pollination/fertilization for fruit/seed production.
  • Cultural Role: Symbols of emotions; floriculture = commercial flower cultivation (e.g., rose, jasmine for homes; marigold, lotus for festivals).
  • Biological View: Sites for gametophyte development (androecium = stamens, gynoecium = carpels).
  • Ornamental Examples: Rose, lily, chrysanthemum, dahlia, orchid (homes/gardens).
  • Social Flowers: Marigold (festivals), lotus (religious), jasmine (weddings), hibiscus (offerings), tulsi (daily worship).
  • Biotech Relevance: Hybrid flowers for ornamental trade; pollen allergens in allergy research.
Fig. 1.7: Pistil structures (Description)

(a) Dissected Hibiscus pistil; (b) Syncarpous Papaver; (c) Apocarpous Michelia; (d) Anatropous ovule with funicle, hilum, micropyle, chalaza, integuments, nucellus. Visual: Multi-layered ovule cross-section.

1.2 Pre-fertilisation: Structures and Events

  • Overview: Floral primordia differentiate into inflorescences; male (androecium) and female (gynoecium) organs form via hormonal changes.
  • Gynoecium Types: Monocarpellary (single pistil, e.g., pea); multicarpellary syncarpous (fused, e.g., tomato); apocarpous (free, e.g., lotus).
  • Placentation: Marginal (pea), axile (lemon), parietal (mustard), free central (Dianthus), basal (sunflower).
  • Biotech Relevance: Ovule culture for hybrid embryos.

1.2.1 Stamen, Microsporangium and Pollen Grain

  • Stamen Structure: Filament (stalk) + bilobed anther (dithecous, 4 microsporangia); attachment: dorsifixed/basifixed/versatile.
  • Microsporangium Walls: Epidermis (protection), endothecium (fibrous, dehiscence), middle layers (nutrition), tapetum (nourishes, multinucleate via mitosis).
  • Microsporogenesis: Sporogenous tissue → PMCs (diploid) → meiosis → haploid microspore tetrads (isobilateral/tetragonal).
  • Pollen Grain: Exine (sporopollenin, resistant, germ pores); intine (cellulose); 2-celled (vegetative + generative) or 3-celled ( + 2 male gametes); viability: minutes (cereals) to months (some families); storage in liquid N2 for pollen banks.
  • Allergens/Nutrients: Parthenium causes asthma; pollen tablets for nutrition/athletes.
  • Evolutionary Note: Exine patterns for species ID; fossils preserved.
Fig. 1.2-1.3: Stamen, anther T.S., microsporangium (Description)

(a) Stamen with filament/anther; (b) 3D anther cut; (c) Young anther T.S. (sporogenous); (d) Microsporangium walls; (e) Dehisced anther. Visual: Layers labeled, tetrads forming.

Fig. 1.4-1.5: Pollen grains, tetrad stages (Description)

SEM pollen varieties; enlarged tetrad; maturing microspore (vegetative/generative cells). Visual: Sculptured exine, spindle-shaped generative cell.

1.2.2 The Pistil, Megasporangium (Ovule) and Embryo Sac

  • Pistil Parts: Stigma (pollen landing), style (pollen tube path), ovary (locule with placenta/ovules).
  • Ovule Structure: Anatropous (common); funicle (stalk), hilum (attachment), micropyle (opening), chalaza (base), integuments (2, protective), nucellus (food-rich).
  • Megasporogenesis: MMC (diploid) in micropyle → meiosis → linear tetrad; 3 degenerate, functional megaspore (haploid) → embryo sac.
  • Embryo Sac Development: Monosporic (Polygonum type): 3 mitotic divisions → 8 nuclei (7 cells): 3 antipodals (chalazal), 2 synergids + egg (micropylar), central cell (2 polar nuclei → diploid secondary nucleus).
  • Ploidy: Nucellus/MMC 2n; megaspore/embryo sac n; central cell 2n.
  • Biotech Relevance: In vitro ovule pollination.
Fig. 1.8: Ovule parts, embryo sac stages (Description)

(a) MMC, dyad, tetrad; (b) 2/4/8-nucleate; (c) Mature 7-celled sac (egg apparatus, central cell, antipodals). Visual: Sequential divisions, filiform apparatus in synergids.

1.3 Double Fertilisation

  • Overview: Unique to angiosperms; pollen tube delivers 2 male gametes to embryo sac.
  • Steps: Generative cell → 2 sperm; tube enters via micropyle (porogamy), one sperm + egg → zygote (2n embryo); other + central cell → PEN (3n endosperm).
  • Entry Types: Porogamy (common), chalazogamy, mesogamy.
  • Evolutionary Advantage: Ensures nutrition (endosperm) for embryo; syngamy + triple fusion.
  • Biotech Relevance: Isolated double fert in vitro (test-tube).
Fig. 1.9: Double fertilization (Description)

Pollen tube penetration; sperm fusion with egg/central cell; zygote/PEN formation. Visual: Nuclei fusion diagrams.

1.4 Post-fertilisation: Structures and Events

  • Overview: Zygote → proembryo → globular → heart/torpedo → mature embryo; PEN → free nuclear → cellular endosperm.
  • Embryo Development: Dicot (bean): 2 cotyledons, hypocotyl, radicle, plumule, epicotyl; monocot (grass): shield-shaped, coleoptile/coleorhiza.
  • Seed: True (fertilized ovule): testa (outer), tegmen (inner), embryo, endosperm (nutritive); albuminous/non-albuminous.
  • li>Fruit: Parthenocarpic (unfertilized, e.g., banana); true (e.g., mango pericarp layers).
  • Biotech Relevance: Seed banks, embryo rescue.
Fig. 1.10-1.12: Embryo, seed, fruit (Description)

Proembryo stages; dicot/monocot embryo; seed coat/embryo. Visual: Longitudinal sections, suspensor role.

1.5 Apomixis and Polyembryony

  • Apomixis: Asexual seed formation (diplospory, apospory, adventive embryony); clones parent, mimics sexual (e.g., Asteraceae, grasses).
  • Polyembryony: Multiple embryos/seed (e.g., citrus nucellar, gymnosperms); natural/artificial.
  • Significance: Hybrid vigor perpetuation; challenges seed production.
  • Biotech Relevance: Induce apomixis in crops for uniform hybrids.

Summary

  • Angiosperm reproduction: Flower → gametophytes → double fert → seed/fruit; apomixis alternative for stability/diversity balance.
  • Interlinks: To inheritance (Ch5), ecology (pollination syndromes).

Why This Guide Stands Out

Repro-focused: Step-wise developments, ploidy trackers, visuals. Free 2025 with mnemonics, crop links for retention.

Key Themes & Tips

  • Aspects: Meiosis for variation, double fert uniqueness, seed dispersal.
  • Tip: Memorize diagrams (anther walls: EEMT); trace ploidy changes.

Exam Case Studies

Apomixis in wheat hybrids; pollen viability in storage.

Project & Group Ideas

  • Dissect flowers, observe pollen under microscope.
  • Debate: Sexual vs. apomictic reproduction in crops.
  • Research: Double fert evolution.