Conic Sections – NCERT Class 11 Mathematics Chapter 10 – Circles, Parabolas, Ellipses, Hyperbolas, and Applications
Covers geometric definitions, derivation of standard equations, properties, and graphical representations of circles, parabolas, ellipses, and hyperbolas; discusses eccentricity, axes, latus rectum, and real-life applications in physics and engineering, with examples, exercises, and historical context from Apollonius to modern analytic geometry.
Conic Sections: Class 11 NCERT Chapter 10 - Ultimate Study Guide, Notes, Questions, Quiz 2025
Conic Sections
Chapter 10: Mathematics - Ultimate Study Guide | NCERT Class 11 Notes, Questions, Examples & Quiz 2025
Full Chapter Summary & Detailed Notes - Conic Sections Class 11 NCERT
Overview & Key Concepts
Chapter Goal: Explore conic sections—curves from plane-cone intersections: circles, ellipses, parabolas, hyperbolas. Builds on lines (Ch9). Exam Focus: Standard equations, focus/directrix, latus rectum. 2025 Updates: More apps like orbits, optics. Fun Fact: Apollonius named parabola/hyperbola (262-190 BC). Core Idea: Geometric definitions yield algebraic equations. Real-World: Telescopes, headlights. Ties: Vectors (Ch10), 3D (Ch12). Expanded: Full subtopics with explanations, visuals from PDF.
Wider Scope: From cone sections to equations of circle/parabola (PDF covers up to parabola).
Expanded Content: Degenerate cases, standard forms, properties.
10.1 Introduction: Curves from Cones
Conics: Intersections of planes with double-napped cone. Wide apps: Planetary motion, reflectors. Bertrand Russell quote: Link math to life—transform world via knowledge.
10.2 Sections of a Cone: Generating Curves
Fixed vertical l, rotating m at angle α: Double-napped cone (vertex V, axis l, generator m). Plane at β to axis: Varies sections. Circle (β=90°), ellipse (α<β<90°), parabola (β=α), hyperbola (β<α). Degenerates: Point (α<β≤90° at vertex), line (β=α at vertex), intersecting lines (β<α at vertex).
10.3 Circle: Equidistant Points
Set of points equidistant from center (h,k), radius r: $$(x-h)^2 + (y-k)^2 = r^2$$. At origin: $$x^2 + y^2 = r^2$$. Complete square for center/radius. Ex: Through points, center on line—solve system.
10.4 Parabola: Focus-Directrix Balance
Equidistant from focus F, directrix l. Axis: Perp through F to l; vertex: Midway. Standard: Vertex origin, axis x/y. y²=4ax (right, focus (a,0), directrix x=-a); y²=-4ax (left); x²=4ay (up); x²=-4ay (down). Latus rectum: Chord thru focus perp to axis, length 4a.
30 Questions & Answers - NCERT Based (Class 11) - From Exercises 10.1 & Variations
Based on NCERT Ex 10.1 (15Q circles) + parabola intro. Part A: 10 (1 mark short), Part B: 10 (4 marks medium), Part C: 10 (8 marks long). Answers point-wise, numerical stepwise with MathJax.
Part A: 1 Mark Questions (10 Qs - Short from Ex 10.1 & Variations)
1. Circle center (0,0), radius r eq?
1 Mark Answer:
$$ x^2 + y^2 = r^2 $$
2. What is conic section?
1 Mark Answer:
Plane-cone intersection
3. Parabola definition?
1 Mark Answer:
Equidistant focus-directrix
4. Circle std eq at origin?
1 Mark Answer:
$$ x^2 + y^2 = r^2 $$
5. Latus rectum length parabola?
1 Mark Answer:
4a
6. Focus for y²=4ax?
1 Mark Answer:
$$ (a, 0) $$
7. Directrix for y²=4ax?
1 Mark Answer:
$$ x = -a $$
8. Degenerate parabola?
1 Mark Answer:
Straight line
9. Circle radius from eq?
1 Mark Answer:
√(right side after complete square)
10. Parabola opens right if?
1 Mark Answer:
Positive coeff in y²=4ax
Part B: 4 Marks Questions (10 Qs - Medium from Ex 10.1)
1. Eq circle center (0,2) radius 2? (Ex 10.1 Q1)
4 Marks Answer (Step-by-Step):
Step 1: h=0,k=2,r=2
Step 2: $$(x-0)^2 + (y-2)^2 = 4$$
Relevance: Std form.
2. Center/radius x²+y²-4x-8y-45=0? (Ex 10.1 Q7)
4 Marks Answer (Step-by-Step):
Step 1: Complete: (x-2)² + (y-4)² = 65
Step 2: Center (2,4), r=√65
Relevance: Square method.
3. Circle thru (4,1),(6,5), center on 4x+y=16? (Ex 10.1 Q10)
4 Marks Answer (Step-by-Step):
Step 1: Assume (h,k), r² eqs
Step 2: h+k=4 from line? Wait, 4h+k=16
Step 3: Solve system: h=3,k=4,r=√10
Relevance: Intersection.
4. Eq circle center (-a,-b) r=√(a²+b²)? (Ex 10.1 Q5)
4 Marks Answer (Step-by-Step):
Step 1: Plug h=-a,k=-b,r=√(a²+b²)
Step 2: $$(x+a)^2 + (y+b)^2 = a^2 + b^2$$
Relevance: Thru origin.
5. Point (-2.5,3.5) inside x²+y²=25? (Ex 10.1 Q15)
4 Marks Answer (Step-by-Step):
Step 1: Plug: 6.25+12.25=18.5<25
Step 2: Inside (dist² < r²)
Relevance: Location test.
6. Focus/directrix/latus y²=8x? (Ex 5 like)
4 Marks Answer (Step-by-Step):
Step 1: 4a=8,a=2
Step 2: Focus (2,0), directrix x=-2, latus=8
Relevance: Parameters.
7. Circle center (1,1) r=√2? (Ex 10.1 Q4)
4 Marks Answer (Step-by-Step):
Step 1: $$(x-1)^2 + (y-1)^2 = 2$$
Relevance: Simple plug.
8. Eq intercepts a,b thru (0,0)? (Ex 10.1 Q13)
4 Marks Answer (Step-by-Step):
Step 1: x/a + y/b=1, thru (0,0): 0=1 false unless circle special
Step 2: Wait, circle? General: Solve.
Relevance: Axes.
9. Center/radius (x+5)²+(y-3)²=36? (Ex 10.1 Q6)
4 Marks Answer (Step-by-Step):
Step 1: (-5,3), r=6
Relevance: Direct.
10. Circle r=5 center x-axis thru (2,3)? (Ex 10.1 Q12)
4 Marks Answer (Step-by-Step):
Step 1: (h,0), (h-2)²+9=25
Step 2: h=3 or 1, eqs.
Relevance: Constraint.
Part C: 8 Marks Questions (10 Qs - Long Detailed)
1. Full Ex 10.1 Q1-3: Centers/radii calcs. (Adapt)
8 Marks Answer (Step-by-Step Numerical):
(i) (0,2),2: $$(x)^2 + (y-2)^2=4$$
(ii) (-2,3),4: $$(x+2)^2 + (y-3)^2=16$$
(iii) (1/4,1/2),1/2
Steps: Plug std.
2. Ex 10.1 Q6-8: Complete square multiple.
8 Marks Answer (Step-by-Step Numerical):
Step 1: Q6: (-5,3),6
Step 2: Q7: (2,4),√65
Step 3: Q8: (4,-5),√37
Proof: Add halves squared.
3. Ex 10.1 Q9: 2x²+2y²-x=0 normalize.
8 Marks Answer (Step-by-Step Numerical):
Step 1: Divide 2: x² + y² -x/2=0
Step 2: (x-1/4)² + y² = (1/4)²
Step 3: Center (1/4,0), r=1/4
Verify: Expand.
4. Ex 10.1 Q10: Thru points, line center.
8 Marks Answer (Step-by-Step Numerical):
Step 1: r²=(4-h)²+(1-k)²=(6-h)²+(5-k)²
Step 2: 4h+k=16
Step 3: Solve: h=3,k=4,r=√10
Eq: (x-3)²+(y-4)²=10
5. Parabola derivation y²=4ax proof.
8 Marks Answer (Step-by-Step Numerical):
Step 1: PF=PB, dist formulas
Step 2: √[(x-a)²+y²]=|x+a|
Step 3: Square: y²=4ax
Full: Converse too.
6. Latus rectum proof length 4a.
8 Marks Answer (Step-by-Step Numerical):
Step 1: Ends at y=±2a, x=a
Step 2: Dist between (a,2a),(a,-2a)=4a
Step 3: Symmetry.
Relevance: Parameter.
7. Circle thru (2,-2),(3,4), center x+y=2? (Ex 4 like)