Complete Solutions and Summary of Surface Areas and Volumes – NCERT Class 9, Mathematics, Chapter 11 – Summary, Questions, Answers, Extra Questions
Detailed summary and explanation of Chapter 11 ‘Surface Areas and Volumes’ covering cones, spheres, hemispheres, and their surface areas and volumes with all question answers, extra questions, and solutions from NCERT Class IX, Mathematics.
Updated: 3 weeks ago

SURFACE AREAS AND VOLUMES
Chapter 11: Mathematics - Complete Study Guide
Chapter Overview
What You'll Learn
Cone Surface
Curved πrl, total πr(l+r); derive from sector.
Sphere Surface
Total 4πr²; from rotating semicircle.
Hemisphere
Curved 2πr², total 3πr².
Combinations
Cone-cylinder, sphere-cone volumes/surfaces.
Key Highlights
Chapter covers surface areas of cones (derived from net sector, \( l = \sqrt{r^2 + h^2} \)), spheres (4πr² from rotation), hemispheres, and combinations like cone on cylinder. Volumes include cone (1/3πr²h), sphere (4/3πr³). Applications: tents, caps, painting costs, grain estimation on cob.
Comprehensive Chapter Summary
1. Surface Area of a Right Circular Cone
- Recall: Studied surface areas of cube, cuboid, cylinder; now cone, a pyramid-like solid generated by rotating right triangle around perpendicular side.
- Activity: Cut right-angled triangle ABC (right at B), paste string on AB, rotate around string; forms cone shape like ice-cream cone (Fig. 11.1).
- Definitions: Vertex A, height AB = h, base radius BC = r, slant height AC = l; B center of base (Fig. 11.1(c)).
- Not right circular cone: If axis not perpendicular to base (Fig. 11.2(a)) or base not circular (Fig. 11.2(b)).
- Activity (i): Cut paper cone along slant height l, open; forms sector of circle like cake slice (Fig. 11.3(a)).
- Activity (ii): Bring tips A, B together; curved edge forms base circumference 2πr (Fig. 11.3(c)).
- Activity (iii): Cut sector into small triangles from O; each ≈ triangle with height l.
- Activity (iv): Area each triangle = \( \frac{1}{2} \times \) base × l; total area = \( \frac{1}{2} l \times \) (sum bases) = \( \frac{1}{2} l \times 2\pi r = \pi r l \).
- Curved Surface Area (CSA) Cone = \( \pi r l \), where r base radius, l slant height.
- Relation: \( l^2 = r^2 + h^2 \) (Pythagoras, Fig. 11.4); \( l = \sqrt{r^2 + h^2} \).
- Total Surface Area (TSA) = CSA + base area = \( \pi r l + \pi r^2 = \pi r (l + r) \).
- Example 1: l=10 cm, r=7 cm; CSA = \( \pi \times 7 \times 10 = 220 \) cm².
- Example 2: h=16 cm, r=12 cm (\( \pi=3.14 \)); l=20 cm; CSA=753.6 cm², TSA=1205.76 cm².
- Example 3: Corn cob r=2.1 cm, h=20 cm; l≈20.11 cm; CSA≈132.73 cm²; grains=4/cm² → ≈531 grains.
- Elaboration: Derivation approximates sector as triangles; exact for limit; useful for nets, unrolling surfaces.
- Application: Tents (slant for canvas), caps (sheet area), painting (outer surface).
- Exercise 11.1: Diameter 10.5 cm (r=5.25 cm), l=10 cm; CSA=165 cm²; TSA=231 cm²; etc.
- Extensions: Oblique cones differ, but focus right circular; combine with cylinders for real objects.
- Verification: Measure physical cone net; circumference matches base.
Activity: Cone Rotation
Rotate triangle; observe cone formation; measure h, r, l to verify Pythagoras.
2. Surface Area of a Sphere
- Sphere: Solid from rotating semicircle around diameter; every point equidistant r from center.
- Activity: Paste string on circular disc diameter, rotate; forms sphere like ball (Fig. 11.6).
- Surface Area: Derived from surface of zone; total TSA = \( 4\pi r^2 \).
- Great Circle: Any plane through center intersects sphere in circle radius r.
- Hemisphere: Half sphere; curved SA = \( 2\pi r^2 \), TSA = \( 3\pi r^2 \) (includes base).
- Example: Sphere r=7 cm; TSA = \( 4 \times \frac{22}{7} \times 49 = 616 \) cm².
- Elaboration: Archimedes' method: Sphere SA equals cylinder lateral minus bases; intuitive from projection.
- Application: Balls, globes; painting/ coating costs.
- Relation to Cone: Sphere as limit of polyhedra; formulas unify curved surfaces.
- Verification: Compare with known volumes; SA/volume ratio for spheres minimal.
- Extensions: Spherical caps, zones for partial surfaces.
Cone Derivation
Sector net unrolls to πrl; triangles approximate area.
Sphere Rotation
Semicircle generates 4πr²; uniform curvature.
Example: Corn Cob Grains
Apply CSA to estimate 531 grains; real-world agronomy link.
3. Combinations of Solids
- Composite: Cone on cylinder (ice-cream); SA = cylinder lateral + cone CSA (no bases if joined).
- Volume: Sum individual; e.g., cone + hemisphere = \( \frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3 \).
- Example: Cylinder h=10 cm, r=3 cm + cone h=4 cm; combined TSA calculation excludes internal base.
- Activity: Build paper models; measure total SA.
- Elaboration: Subtract overlapping surfaces; add exposed.
- Application: Tanks, tents with poles; packaging costs.
- Exercise: Find SA of cone-sphere, volume conversions.
- Extensions: Frustum (cone slice) SA = π(r1+r2)l + πr1² + πr2².
- Verification: Compare calculated vs measured paint needed.
Activity: Sphere from Disc
Rotate disc; visualize uniform SA 4πr².
4. Volumes of Solids
- Cone Volume: \( V = \frac{1}{3} \pi r^2 h \); third cylinder same base/height.
- Sphere Volume: \( V = \frac{4}{3} \pi r^3 \); derived from integration or Cavalieri.
- Hemisphere: \( \frac{2}{3} \pi r^3 \).
- Combinations: Add/subtract; e.g., sphere in cone volume difference.
- Example: Cone h=15 cm, r=6 cm; V= \( \frac{1}{3} \times \frac{22}{7} \times 36 \times 15 = 660 \) cm³.
- Elaboration: Scaling: Volume cubes linear dimensions; SA squares.
- Application: Storage capacity, material displacement.
- Exercise: Convert units, find missing dimensions.
- Extensions: Frustum volume \( \frac{1}{3} \pi h (r_1^2 + r_2^2 + r_1 r_2) \).
- Verification: Water fill experiments match formulas.
Example: Tent Canvas
Calculate l, cost for 70₹/m²; practical budgeting.
Key Concepts and Definitions
Slant Height l
\( \sqrt{r^2 + h^2} \).
CSA Cone
\( \pi r l \).
TSA Cone
\( \pi r (l + r) \).
TSA Sphere
\( 4 \pi r^2 \).
Vol Cone
\( \frac{1}{3} \pi r^2 h \).
Vol Sphere
\( \frac{4}{3} \pi r^3 \).
Hemisphere TSA
\( 3 \pi r^2 \).
Important Facts
Questions and Answers from Chapter
Short Questions (1 Mark)
Q1. What is slant height l of cone?
Q2. CSA of cone formula?
Q3. TSA of cone?
Q4. Sphere TSA?
Q5. How generated cone?
Q6. Sphere from?
Q7. Cone net shape?
Q8. l=10 cm, r=7 cm CSA?
Q9. h=16 cm, r=12 cm l?
Q10. Corn cob grains approx?
Q11. Diameter 10.5 cm, l=10 cm r?
Q12. Canvas cost per m²?
Q13. Tarpaulin width?
Q14. Tomb white-wash rate?
Q15. Joker's cap r?
Q16. Bus cones number?
Q17. Painting cost per m²?
Q18. √1.04 ≈?
Q19. Cone height for tent?
Q20. Base radius tent?
Medium Questions (3 Marks)
Q1. Diameter base 10.5 cm, l=10 cm; find CSA.
Q2. l=21 m, diameter base=24 m; find TSA.
Q3. CSA=308 cm², l=14 cm; find (i) r (ii) TSA.
Q4. Conical tent h=10 m, r=24 m; find (i) l (ii) canvas cost ₹70/m².
Q5. Tarpaulin 3 m wide for tent h=8 m, r=6 m; length req. (extra 20 cm, π=3.14).
Q6. Tomb l=25 m, diameter=14 m; white-wash cost ₹210/100 m².
Q7. Joker's cap r=7 cm, h=24 cm; sheet for 10 caps.
Q8. 50 cones diameter=40 cm, h=1 m; paint outer ₹12/m² (π=3.14, √1.04=1.02).
Q9. h=16 cm, r=12 cm; CSA and TSA (π=3.14).
Q10. Corn cob r=2.1 cm, h=20 cm; grains at 4/cm².
Q11. l=10 cm, r=7 cm; CSA (π=22/7).
Q12. Tent h=10 m, r=24 m; l.
Q13. Tarpaulin h=8 m, r=6 m; CSA (π=3.14).
Q14. Tomb l=25 m, r=7 m; CSA.
Q15. Cap h=24 cm, r=7 cm; l.
Q16. Cones r=0.2 m, h=1 m; l approx.
Q17. CSA=308 cm², l=14 cm; r.
Q18. l=21 m, r=12 m; CSA.
Q19. Diameter=10.5 cm, l=10 cm; r.
Q20. h=20 cm, r=2.1 cm; l approx.
Long Questions (6 Marks)
Q1. Derive CSA of cone from net; find for l=10 cm, r=7 cm.
Q2. h=16 cm, r=12 cm; find l, CSA, TSA (π=3.14); explain steps.
Q3. Corn cob r=2.1 cm, h=20 cm, 4 grains/cm²; find grains; derive CSA.
Q4. Tent h=10 m, r=24 m; find l, canvas cost ₹70/m²; full calc.
Q5. Tarpaulin 3 m wide, tent h=8 m, r=6 m; length with 20 cm extra (π=3.14).
Q6. Tomb l=25 m, diameter=14 m; white-wash ₹210/100 m²; cost.
Q7. Joker's cap r=7 cm, h=24 cm; sheet for 10 caps; derive l.
Q8. 50 cones diameter=40 cm, h=1 m; paint ₹12/m² (π=3.14, √1.04=1.02).
Q9. CSA=308 cm², l=14 cm; r and TSA; solve equation.
Q10. l=21 m, diameter=24 m; TSA; include base.
Q11. Diameter=10.5 cm, l=10 cm; CSA and TSA.
Q12. Conical tent h=10 m, r=24 m; l and cost ₹70/m² for canvas.
Q13. Tarpaulin 3 m wide h=8 m r=6 m; length +20 cm extra.
Q14. Tomb l=25 m diameter=14 m; cost ₹210/100 m².
Q15. Cap r=7 cm h=24 cm; area for 10.
Q16. 50 cones d=40 cm h=1 m; total paint cost.
Q17. h=16 cm r=12 cm; full areas π=3.14.
Q18. Cob r=2.1 h=20; grains detail.
Q19. CSA=308 l=14; r TSA.
Q20. l=10 r=7; derive and compute CSA.
Interactive Knowledge Quiz
Test your understanding of Surface Areas and Volumes
Quick Revision Notes
Cone Formulas
- CSA: \( \pi r l \)
- TSA: \( \pi r (l + r) \)
- l: \( \sqrt{r^2 + h^2} \)
Sphere Formulas
- TSA: \( 4\pi r^2 \)
- Vol: \( \frac{4}{3}\pi r^3 \)
- Hemi TSA: \( 3\pi r^2 \)
Combinations
- Vol Cone: \( \frac{1}{3}\pi r^2 h \)
- Exclude joins
Exam Strategy Tips
- Draw nets
- Compute l first
- Use π=22/7
- Approx roots
- Cost/num calcs
Group Discussions
No forum posts available.
Easily Share with Your Tribe