Trigonometric Functions – NCERT Class 11 Mathematics Chapter 3 – Angles, Radian Measure, Graphs, and Identities
Explores angle measurement in degrees and radians, definitions and properties of trigonometric functions, values of trigonometric ratios, graphs, signs in different quadrants, domain and range, trigonometric identities for sum, difference, double and triple angles, and numerous illustrative examples and exercises.
Tags: Trigonometric Functions, Radian Measure, Degree Measure, Angle Conversion, Sine, Cosine, Tangent, Identities, Quadrants, Graphs, Domain and Range, Sum and Difference Identities, Double Angle, Triple Angle, Example Problems, NCERT Class 11, Mathematics, Chapter 3
Trigonometric Functions: Class 11 NCERT Chapter 3 - Ultimate Study Guide, Notes, Questions, Quiz 2025
Trigonometric Functions
Chapter 3: Mathematics - Ultimate Study Guide | NCERT Class 11 Notes, Questions, Examples & Quiz 2025
Full Chapter Summary & Detailed Notes - Trigonometric Functions Class 11 NCERT
Overview & Key Concepts
Chapter Goal: Generalize trig ratios to functions using unit circle; study angles in degrees/radians, properties of sin/cos etc. Exam Focus: Conversions, arc lengths, trig values at quadrantal angles. 2025 Updates: Emphasis on radian measure applications, identities like $$ \sin^2 x + \cos^2 x = 1 $$. Fun Fact: Derived from Greek 'trigon' (triangle) + 'metron' (measure); used by Arya Bhatt. Core Idea: Angle as rotation; trig functions from unit circle coordinates. Real-World: Navigation, seismology, tides. Ties: Builds on Class 10 heights/distances; leads to Ch4 identities. Expanded: Examples from PDF, conversion table, unit circle diagram.
Wider Scope: From right-triangle ratios to any angle via radians.
Expanded Content: Positive/negative angles, degree/radian relations, trig signs in quadrants.
3.1 Introduction
Trigonometry measures triangle sides; evolved for navigation/surveying. Now in physics (atoms), music (tones), oceanography (tides). Extends acute ratios to functions for any angle.
3.2 Angles
Definition: Rotation from initial to terminal side at vertex; anticlockwise positive, clockwise negative (Fig 3.1).
Units: Revolution (full 360°), degree (1/360 rev), radian (arc length = radius in unit circle).
Box 1: Common Angle Measures (Simple Way: Quick Conversion Table)
Degree
Radian
Approx.
0°
0
0
30°
$$ \pi/6 $$
0.52
45°
$$ \pi/4 $$
0.79
60°
$$ \pi/3 $$
1.05
90°
$$ \pi/2 $$
1.57
180°
$$ \pi $$
3.14
270°
$$ 3\pi/2 $$
4.71
360°
$$ 2\pi $$
6.28
Simple Way: $$ \pi $$ rad = 180°; multiply degrees by $$ \pi/180 $$ for radians.
Angles: Rotation measure; degrees/radians via unit circle. Trig: Ratios to functions; key identity $$ \sin^2 x + \cos^2 x = 1 $$; signs via quadrants (Fig 3.7).
Applications: Arc length l = rθ; wheel revolutions.
Why This Guide Stands Out
Math-focused: Conversions, unit circle, identities with steps. Free 2025 with MathJax.
Key Themes & Tips
Aspects: Measures, functions, properties.
Tip: Memorize $$ \pi $$ = 180°; practice conversions.
Exam Case Studies
Convert 25° to radian, find arc length, trig values at $$ \pi/2 $$
Project & Group Ideas
Measure angles in real rotations (clock hands).
Plot unit circle trig values.
Key Definitions & Terms - Complete Glossary
All terms from chapter; detailed with examples, relevance. Expanded: 15+ terms with depth.
Angle
Rotation measure from initial to terminal side. Relevance: Basis trig. Ex: Positive anticlockwise. Depth: Vertex fixed.
Initial Side
Starting ray position. Relevance: Reference. Ex: OA in Fig 3.1. Depth: Fixed for measure.
Terminal Side
Ending ray after rotation. Relevance: Defines angle. Ex: OB. Depth: Can coincide after 2$$ \pi $$
Vertex
Rotation point. Relevance: Common origin. Ex: O. Depth: Fixed.
1/360 revolution. Relevance: Common unit. Ex: 1° = 60'. Depth: Minutes/seconds subdivide.
Radian Measure
Arc/radius in unit circle. Relevance: Natural for calc. Ex: 1 rad ≈57°. Depth: 2$$ \pi $$ full circle.
Unit Circle
Radius 1, center origin. Relevance: Defines trig. Ex: P(a,b) on circle. Depth: a² + b² =1.
Sine Function
sin x = b (y-coord). Relevance: Opposite/hyp. Ex: sin $$ \pi/2 $$ =1. Depth: -1 to 1 range.
Cosine Function
cos x = a (x-coord). Relevance: Adjacent/hyp. Ex: cos 0 =1. Depth: Even: cos(-x)=cos x.
Tangent Function
tan x = sin x / cos x. Relevance: Opp/adj. Ex: tan $$ \pi/4 $$ =1. Depth: Undefined at odd $$ \pi/2 $$
Quadrantal Angle
Multiple of $$ \pi/2 $$. Relevance: Standard values. Ex: 0, $$ \pi $$. Depth: Axes points.
Periodicity
Repeats every 2$$ \pi $$. Relevance: Functions cycle. Ex: sin(x+2$$ \pi $$)=sin x. Depth: n integer.
Arc Length
l = r θ (radians). Relevance: Applications. Ex: Wheel distance. Depth: θ in rad.
Tip: Radian for calc; degree for everyday. Depth: Signs: sin odd, cos even. Errors: Forget radian unit. Historical: Arya Bhatt. Interlinks: Ch4 identities. Advanced: Principal values. Real-Life: Pendulum swings. Graphs: Unit circle. Coherent: Angles → Measures → Functions.
Additional: Notational: θ° for degrees, θ for radians. Pitfalls: Mix units in formulas.
60+ Questions & Answers - NCERT Based (Class 11) - Expanded from PDF Exercise 3.1
Expanded based on full NCERT Ex 3.1 (7 questions) + variations. Part A: 20 (1 mark short), Part B: 20 (4 marks medium with steps), Part C: 20 (8 marks long with detailed steps). All from PDF; answers point-wise, numerical stepwise with MathJax. Added more: Full Ex 3.1 solved, variations for pendulum, wheel, chord etc.
Part A: 1 Mark Questions (20 Qs - Short from Ex 3.1 & Variations)
1. What is the radian measure of 180°?
1 Mark Answer:
$$ \pi $$ radian.
2. Convert 90° to radians (approx).
1 Mark Answer:
$$ \pi/2 $$ rad.
3. What is 1 radian in degrees (approx)?
1 Mark Answer:
57°.
4. sin 0° = ?
1 Mark Answer:
0.
5. cos $$ \pi/2 $$ = ?
1 Mark Answer:
0.
6. tan $$ \pi $$ = ?
1 Mark Answer:
0.
7. Is sin(-x) = -sin x?
1 Mark Answer:
Yes (odd function).
8. Full circle in radians?
1 Mark Answer:
2$$ \pi $$.
9. Arc length formula?
1 Mark Answer:
l = r θ (θ rad).
10. sin $$ \pi $$ = ?
1 Mark Answer:
0.
11. cos 0 = ?
1 Mark Answer:
1.
12. 1° in radians (approx)?
1 Mark Answer:
0.0175.
13. Positive angle direction?
1 Mark Answer:
Anticlockwise.
14. sin $$ 3\pi/2 $$ = ?
1 Mark Answer:
-1.
15. Key identity?
1 Mark Answer:
$$ \sin^2 x + \cos^2 x = 1 $$
16. Radian measure of 360°?
1 Mark Answer:
$$ 2\pi $$ rad.
17. 1 minute = ? degrees
1 Mark Answer:
1/60 °.
18. cos $$ \pi $$ = ?
1 Mark Answer:
-1.
19. Domain for tan x undefined?
1 Mark Answer:
$$ (2n+1)\pi/2 $$.
20. 1 second = ? minutes
1 Mark Answer:
1/60 '.
Part B: 4 Marks Questions (20 Qs - Medium from Ex 3.1 Full + Variations)
1. Find radian measures for: (i) 25°
4 Marks Answer (Step-by-Step):
Step 1: $$ \theta = 25 \times \pi / 180 $$
Step 2: Simplify: $$ 5\pi / 36 $$ rad.
Verify: Approx 0.436 rad.
Relevance: Basic conversion.
16. Wheel makes 360 rev/min; radians in 1 sec? (Ex 3.1 Q3)
13. Ex 3.1 Q5 + Q6: Chord 20 cm d=40 cm arc + Ratio r for 60°/75° same l
8 Marks Answer (Step-by-Step Numerical):
Chord: Angle 60°; arc $$ 20\pi/3 $$ cm
Ratio: $$ r_1:r_2 =75:60=5:4 $$
Steps: Cos rule for angle; inverse θ for r. Verify geometry.
Extended: Derive angle using law of cosines fully.
14. Full Ex 3.1 Q7: Pendulum angles for (i)10 cm (ii)15 cm (iii)21 cm l=75 cm
8 Marks Answer (Step-by-Step Numerical):
(i) $$ 10/75=2/15 $$ rad ≈7.64°
(ii) $$ 15/75=1/5 $$ rad ≈11.46°
(iii) $$ 21/75=7/25 $$ rad ≈16.06°
Steps: θ=l/r each; convert to deg if needed. Verify small angle approx.
15. Ex1 + Ex2: 40°20' to rad + 6 rad to deg (π=22/7)
8 Marks Answer (Step-by-Step Numerical):
Ex1: 121/3 ° ×π/180= $$ 121\pi/540 $$ rad
Ex2: 6×180×7/22= $$ 343^\circ 38' 11'' $$
Steps: Minutes to deg; DMS conversion. Verify approx.
Extended: Error analysis with π approx.
16. Ex3 + Ex4: r for 60° arc 37.4 cm (π=22/7) + Minute hand 1.5 cm 40 min (π=3.14)
8 Marks Answer (Step-by-Step Numerical):
Ex3: θ=π/3; r=37.4×3×7/22=35.7 cm
Ex4: θ=4π/3; l=1.5×4π/3=6.28 cm
Steps: Deg to rad; l=rθ. Verify values.
Extended: Compare approximations.
17. Ex5 + Ex 3.1 Q1(i): Same arcs 65°/110° ratio + 25° to rad
8 Marks Answer (Step-by-Step Numerical):
Ex5: r1:r2=22:13
Q1(i): $$ 5\pi/36 $$ rad
Steps: θ to rad; inverse ratio. Verify conversions.
Extended: General formula for ratios.
18. Ex 3.1 Q2(i) + Q3: $$ 11\pi/16 $$ to deg + Wheel radians/sec
8 Marks Answer (Step-by-Step Numerical):
Q2(i): 123.75°
Q3: $$ 12\pi $$ rad/sec
Steps: 180/π; rev to rad. Verify.
Extended: Units consistency.
19. Ex 3.1 Q4 + Q5: Arc deg for 22 cm + Chord arc length
8 Marks Answer (Step-by-Step Numerical):
Q4: 12.6°
Q5: $$ 20\pi/3 $$ cm
Steps: l/r to deg; cos rule to arc. Verify.
Extended: Derive chord angle.
20. Ex 3.1 Q6 + Q7(ii): Radii ratio + Pendulum 15 cm arc
8 Marks Answer (Step-by-Step Numerical):
Q6: 5:4
Q7(ii): $$ 1/5 $$ rad
Steps: Inverse θ; l/r. Verify.
Extended: Applications in physics.
Tip: Practice full Ex 3.1; focus on steps for 8 marks. Use PDF for exact values.
Key Concepts - In-Depth Exploration
Core ideas with examples, pitfalls, interlinks. Expanded with details.
Angle Measurement
Rotation; positive/negative. Deriv: From revolution. Pitfall: Direction mix. Ex: +90° vs -270°. Interlink: All. Depth: Terminal coincides after 360°.
Radian vs Degree
Arc-based vs fraction. Deriv: $$ \pi $$=180°. Pitfall: Unit forget in l=rθ. Ex: 1 rad=57°. Interlink: Conversions. Depth: Radian dimensionless.
Unit Circle
Defines sin/cos. Deriv: Pythagoras a²+b²=1. Pitfall: Radius not 1. Ex: P(cos x, sin x). Interlink: Functions. Depth: Quadrants signs.
Trig Identities
$$ \sin^2 + \cos^2 =1 $$. Deriv: Distance from origin. Pitfall: Domain forget. Ex: tan=sin/cos. Interlink: Ch4. Depth: Derive sec from it.
Periodicity
2$$ \pi $$ period. Deriv: Full circle. Pitfall: Odd multiples. Ex: sin( x + 2π )=sin x. Interlink: Graphs. Depth: Z multiples.
Sign of Functions
Quadrants: All positive I, sin/cos IV etc. Deriv: Coord signs. Pitfall: Negative angles. Ex: sin(-x)=-sin x. Interlink: Even/odd. Depth: Fig 3.7.
Advanced: Principal range. Pitfalls: Undefined tan at π/2. Interlinks: Calculus derivatives. Real: Waves. Depth: Arya Bhatt contributions. Examples: Conversions. Graphs: Circle plot. Errors: Degree in rad formula. Tips: Table memorize; small angle θ rad≈θ deg/57.
Extended: Csc/sec domains. Common: Forget radian in arc.