Complete Solutions and Summary of Units and Measurement – NCERT Class 11, Physics, Chapter 1 – Summary, Questions, Answers, Extra Questions
Summary of SI units, significant figures, dimensional analysis, measurement errors, and solved NCERT problems.
Updated: 2 weeks ago
Categories: NCERT, Class XI, Physics, Summary, Measurement, SI Units, Dimensions, Chapter 1

Units and Measurement
Chapter 1: Physics - Ultimate Study Guide | NCERT Class 11 Notes, Questions, Examples & Quiz 2025
Full Chapter Summary & Detailed Notes - Units and Measurement Class 11 NCERT
Overview & Key Concepts
- Chapter Goal: Introduce measurement fundamentals, SI units, significant figures, and dimensional analysis for precise physics. Exam Focus: Base/derived units, rules for sig figs, dimensional homogeneity. 2025 Updates: Revised SI definitions (2019, reflected in 2025 reprint). Fun Fact: Speed of light defines metre since 1983. Core Idea: Units standardize comparisons; dimensions reveal relations. Real-World: GPS uses precise time (second via caesium), engineering tolerances via sig figs.
- Wider Scope: Foundation for all physics; links to error analysis, calculus in mechanics.
1.1 Introduction
- Measurement compares physical quantities to reference standards (units). Result: Numerical value \( \times \) unit. E.g., length \( 5 \) m (5 times metre).
- Large quantities interrelated; limited base units suffice. Base units for fundamental (length, mass, time, etc.); derived for others (velocity = length/time).
- Systems: CGS (cm, g, s), FPS (ft, lb, s), MKS (m, kg, s). Inconsistent; led to SI.
- Key: Precision via least count; errors inherent. Units enable global communication in science/tech.
- Example: Distance Earth-Moon \( \sim 3.84 \times 10^{8} \) m; without units, meaningless.
- Depth: Historical chaos (e.g., different foot lengths) necessitated international standards. BIPM oversees.
1.2 The International System of Units
- SI (Système Internationale): Adopted 1960, revised 2019 (effective 2025 NCERT). Decimal-based for easy conversions.
- Seven base quantities/units (Table 1.1): Length (m: \( c = 299792458 \) m/s), Mass (kg: \( h = 6.62607015 \times 10^{-34} \) J s), Time (s: \( \Delta \nu_{\mathrm{Cs}} = 9192631770 \) Hz), Current (A: \( e = 1.602176634 \times 10^{-19} \) C), Temperature (K: \( k = 1.380649 \times 10^{-23} \) J/K), Amount (mol: \( N_A = 6.02214076 \times 10^{23} \)), Intensity (cd: \( K_{\mathrm{cd}} = 683 \) lm/W at \( 540 \times 10^{12} \) Hz).
- Supplementary: Radian (rad: \( d\theta = ds/r \)), Steradian (sr: \( d\Omega = dA/r^2 \)) – dimensionless (Fig. 1.1).
- Derived: E.g., force (N = kg m s\( ^{-2} \)), energy (J = N m). Special names (Appendix A6.2: Hz, Pa, etc.). Retained: min, °C (Table 1.2).
- Prefixes: kilo (\( 10^3 \)), micro (\( 10^{-6} \)) (Appendix A2). Symbols: Italic variables, roman units (Appendix A7/A8).
- Depth: 2019 redefinition ties to constants (c, h, etc.) for invariance. E.g., kg no longer artefact-based. Impacts: Metrology precision for quantum tech.
- Example: Volume = m\( ^3 \); pressure Pa = N/m\( ^2 \). Conversions: 1 km = \( 10^3 \) m.
1.3 Significant Figures
- Report measurements indicating precision: Known digits + first uncertain = sig figs. E.g., pendulum 1.62 s (3 sig figs: 1,6 certain; 2 uncertain).
- Rules: (1) Non-zero significant. (2) Zeros between non-zero significant. (3) Leading zeros (<1) insignificant (0.002308: 4 sig). (4) Trailing zeros no decimal insignificant (12300: 3 sig). (5) Trailing zeros with decimal significant (3.500: 4 sig). (6) Scientific notation resolves (4.700 \( \times 10^2 \) m: 4 sig).
- Unit change doesn't alter sig figs (2.308 cm = 0.02308 m: both 4). Exact factors infinite (\( \pi \) in circumference).
- Order of magnitude: Round to 1 or 10; exponent b. E.g., Earth diameter \( 1.28 \times 10^7 \) m: order \( 10^7 \) (mag 7).
- Depth: Precision from instrument least count (vernier 0.01 cm). Rounding: Intermediate keep extra; final match least precise. E.g., \( 2.35 + 1.2 = 3.6 \) (2 sig).
- Example: 287.5 cm (4 sig); 0.06900 (3 sig, trailing zeros significant).
1.4 Dimensions of Physical Quantities
- Each quantity: Base dimensions \( [\mathrm{M, L, T, A, \Theta, mol, cd}] \). E.g., velocity \( [\mathrm{LT^{-1}}] \), force \( [\mathrm{MLT^{-2}}] \).
- Dimensional formula: Powers of bases. E.g., work \( [\mathrm{ML^2T^{-2}}] \).
- Principle: Physical equations dimensionally homogeneous (terms same dimensions).
- Depth: Dimensions independent of units. Useful: Check formulae, derive relations. Limitations: Ignores constants, dimensionless quantities.
- Example: Equation \( s = ut + \frac{1}{2}at^2 \); \( [\mathrm{L}] = [\mathrm{LT^{-1}}][\mathrm{T}] + [\mathrm{LT^{-2}}][\mathrm{T}^2] = [\mathrm{L}] \).
- Table: Common (velocity \( [\mathrm{LT^{-1}}] \), acceleration \( [\mathrm{LT^{-2}}] \), etc.).
1.5 Dimensional Formulae and Dimensional Equations
- Formula: Expression in dimensions. Equation: = between same dimensions.
- Derive: E.g., period T of pendulum: \( T \propto \sqrt{l/g} \) → \( [\mathrm{T}] = [\mathrm{L}]^{1/2} [\mathrm{LT^{-2}}]^{-1/2} = [\mathrm{T}] \).
- Depth: For products/quotients, add exponents. Vectors/scalars same dimensions if magnitude.
- Example: Reynolds number Re = \( \rho v d / \eta \) (dimensionless: \( [\mathrm{ML^{-1}T^{-1}}] \) for viscosity).
1.6 Dimensional Analysis and its Applications
- (i) Homogeneity: Verify equations. E.g., Bernoulli wrong if dimensions mismatch.
- (ii) Conversions: If \( [Q] = [Q'] \), numerical same in any system.
- (iii) Errors: Relative % additive for products (\( \Delta a / a + \Delta b / b \) for ab).
- (iv) Derive relations: Assume form, equate dimensions. E.g., time period \( T = k (m/l)^a (g/l)^b \) → solve a,b.
- Limitations: Doesn't give constants (\( \pi \)), numerical factors; only powers.
- Depth: Applications: Scale models (ships), fluid dynamics. Example: Drag force \( F_d \propto \rho v^2 A \) (from \( [\mathrm{MLT^{-2}}] = [\mathrm{ML^{-3}}] [\mathrm{LT^{-1}}]^2 [\mathrm{L}^2}] \)).
Summary
- Measurement: Unit \( \times \) number. SI: 7 base, derived. Sig figs: Precision rules. Dimensions: \( [\mathrm{M L T...}] \); analysis for checks/derivations.
Why This Guide Stands Out
Complete: Subtopics detailed, examples solved, Q&A exam-style. Physics-focused with MathJax. Free for 2025.
Key Themes & Tips
- Precision: Sig figs, dimensions.
- SI: Base definitions constant-based.
- Tip: Practice sig fig arithmetic; derive 2-3 formulae.
Exam Case Studies
Sig figs in addition (\( 2.3 + 4.56 = 6.9 \)); dimensional check \( v = u + at \).
Project & Group Ideas
- Measure room dimensions, calculate area sig figs; discuss errors.
Group Discussions
No forum posts available.